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Abstract Periphyton relevance for methylmercury

(MeHg) production and accumulation are now well known

in aquatic ecosystems. Sulfate-reducing bacteria and other

microbial groups were identified as the main MeHg pro-

ducers, but the effect of periphyton algae on the

accumulation and transfer of MeHg to the food web

remains little studied. Here we investigated the role of

specific groups of algae on MeHg accumulation in the

periphyton of Schoenoplectus californicus ssp. (Totora) and
Myriophyllum sp. in Uru Uru, a tropical high-altitude

Bolivian lake with substantial fishing and mining activities

accruing around it. MeHg concentrations were most

strongly related to the cell abundance of the Chlorophyte

genus Oedogonium (r2 = 0.783, p = 0.0126) and to no

other specific genus despite the presence of other 34 genera

identified. MeHg was also related to total chlorophyll-a

(total algae) (r2 = 0.675, p = 0.0459), but relations were

more significant with chlorophyte cell numbers, chloro-

phyll-b (chlorophytes), and chlorophyll-c (diatoms and

dinoflagellates) (r2 = 0.72, p = 0.028, r2 = 0.744,

p = 0.0214, and r2 = 0.766, p = 0.0161 respectively).

However, Oedogonium explains most variability of

chlorophytes and chlorophyll-c (r2 = 0.856, p =\ 0.001

and r2 = 0.619, p = 0.002, respectively), suggesting it is

the most influential group for MeHg accumulation and

periphyton algae composition at this particular location and

given time.

Mercury (Hg), a toxic metal, is widely distributed and

persistent in the environment (Morel et al. 1998). The

toxicity and bioavailability of Hg depend on its chemical

form, among which methylmercury (MeHg) is the most

environmentally relevant. MeHg is more relevant than

other Hg species because it accumulates in the organisms

and biomagnifies through the food chain (Mason et al.

1996; Watras et al. 1998) and can cause severe effects on

biota and human health (Falandysz et al. 2002).

Hg methylation in aquatic ecosystems takes place in

aquatic compartments such as sediments (Heyes et al.

2006), water column (Achá et al. 2012a; Eckley and Hin-

telmann 2006), and periphyton (Achá et al. 2011;

Guimaraes et al. 2006; Hamelin et al. 2015a). Several

studies show that MeHg production is higher in periphyton

than in other aquatic compartments (Gentes et al. 2013;

Guimarães et al. 2000; Hamelin et al. 2015a). Microbial

activity mainly mediates this process. Sulfate-reducing

bacteria (SRB) are frequently the most important Hg

methylators (Achá et al. 2011; Compeau and Bartha 1985;

Gentes et al. 2013), although iron (Fe)-reducing bacteria
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(Fleming et al. 2006; Kerin et al. 2006), methanogens

(Gilmour et al. 2013; Hamelin et al. 2011; Yu et al. 2013),

and other bacteria (Achá et al. 2012b; Gilmour et al. 2013)

may also be important Hg methylators.

Herein, periphyton is defined as a biofilm composed of

algae, bacteria, fungi, microinvertebrates, and organic and

inorganic detritus. All of it is held together by a

mucopolysaccharide matrix (Lowe 1996). Periphyton is

considered one of the main sources of food for aquatic

organisms (invertebrates and fish) (Junk and Piedade 1997;

Molina et al. 2010) as well as a major entry point of MeHg

into the food web (Chasar et al. 2009; Molina et al. 2010).

Periphyton is known to potentially accumulate high MeHg

concentrations (Desrosiers et al. 2006; Hamelin et al.

2015b; Miles et al. 2001), and bioaccumulation is greater

with increasing periphyton biomass (Bell and Scudder

2007; Hamelin et al. 2015b), although a dilution effect has

also been documented (Desrosiers et al. 2006). Hg accu-

mulation in periphyton can be explained in part by the Hg

binding with algae and other organic compounds (naturals

ligands, humic acids, thiols group, and others) (Gorski

et al. 2006; Hintelmann et al. 1995; Pant et al. 1995), but

little attention has been paid on how particular organisms

hosting the periphyton compartment may influence MeHg

accumulation.

Algal community in periphyton could affect metal

accumulation (Hill and Larsen 2005). Lazaro et al. (2013)

showed that conditions that favor cyanobacteria coloniza-

tion in periphyton are associated with higher MeHg

production, suggesting the likely relevance of algae for

MeHg impacts. There is plenty of evidence regarding the

algae-mediated Hg(II) reduction to Hg0 (Ben-Bassat and

Mayer 1977; Le Faucheur et al. 2014; Mason et al. 1995),

which may be regarded as a defense mechanism (Gregoire

and Poulain 2014; Le Faucheur et al. 2014). Bell and

Scudder (2007) reported high concentrations of MeHg in

periphyton samples with high abundance of diatoms, sug-

gesting a greater transfer of MeHg to consumers when

diatoms dominate in the periphyton. Other suggest that

changes in the periphyton community may influence its

potential for MeHg production (Buckman et al. 2015).

However, it remains unclear how other groups of algae

may contribute to MeHg accumulation, in particular in

high-altitude aquatic ecosystems. Here we evaluated the

influence of different algal groups on the bioaccumulation

of MeHg in periphyton at a given time at Lake Uru Uru

(3686 m.a.s.l.), the largest source of fish for Oruro (ap-

proximately half a million people). For this purpose, we

determined the algal composition in periphyton using

microscopic identification, quantification, and chlorophyll

analysis. We also measured MeHg, inorganic Hg (IHg),

and total Hg (THg) concentrations in periphyton.

Materials and Methods

Study Area

Lake Uru Uru is part of the TDPS (Titicaca–Desaguadero–

Poopó–Salar de Coipasa) hydrological system and is

located in the Bolivian highlands at 3.686 m.a.s.l. It is a

shallow lake (0.5–2 m) formed in the 1990s due to the

human-made deviation of the Desaguadero River (United

Nations Environment Programme 1996). The main water

inlets are Desaguadero and Thajarita rivers. Lake Uru Uru

is connected with Lake Poopó through a 30-km channel.

The climate at Lake Uru Uru is cold and dry with average

annual temperatures\10 °C and large temperature fluctu-

ations between day and night (Biosca 1998). The economy

of the region depends mainly on mining due to the presence

of large polymetallic deposits (mainly tin, gold, silver, and

copper), thus causing serious pollution in Lake Uru Uru

(PPO-9505 1995; UNEP 1996), which is the main recep-

tacle of trace metals and metalloids in the area (Garcia

et al. 2005). Uru Uru water has high pH, high conductivity,

and strong daily oxygen and temperature gradients

(Table 1), which are larger than the seasonal gradients

(Alanoca et al. 2016a). The elevated conductivity is related

to a natural process of desiccation in the basin that leads to

a permanent water deficit and a wide seasonal variation of

the lake level.

Sampling Methods

Sampling was performed in May 2011 during the transition

season (lower water) between the dry and wet seasons.

Three sampling areas were selected along Lake Uru Uru:

north (latitude 18°4′55.20″S and longitude 67°4′1.19″W),

central (latitude 18°9′21.59″S and longitude 67°5′20.39″
W), and south (latitude 18°12′21.60″S and longitude 67°4′
40.08″W). Periphyton samples associated with macro-

phytes in each location were collected. Periphyton

associated with Schoenoplectus californicus (Totora) was

removed by scraping the surface of the macrophyte, and

the scrapings collected in new, acid-cleaned 50-mL poly-

ethylene tubes so the samples were suitable for trace-

element analysis. Myriophyllum and its associated peri-

phyton were manually collected in new zip-lock bags to

isolate later. The hard stems were discarded, and as much

Myriophyllum as possible was separated from the peri-

phyton (some very small and soft portions of Myriophyllum
were impossible to separate from the periphyton). The

remaining sample was then stored in new, previously

cleaned 50-mL polyethylene tubes. Subsequently, each

sample was divided into three subsamples. The first was for

microscopic identification and quantification and thus was
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fixed with 4% formaldehyde. The second was preserved at

−20 °C for analyzing chlorophyll-a, -b, and -c. The third

fraction was preserved at −20 °C immediately after col-

lection for THg and MeHg analysis. Such samples were

later freeze-dried to determine dry weight and analysis.

Physicochemical measurements were also taken in the

water column (pH, temperature, dissolved oxygen, and

conductivity) in each sampling area with a multiparameter

probe (Hydrolab).

Microscopic Analysis

A fresh sample of approximately 1 cm3 was diluted into

ultra-clean water until a clear image for identification and

quantification was obtained. Algae were identified as to

genus level and counted at 9250 magnification in a Sed-

gewick–Rafter counting chamber (1-mL volume) using an

optical microscope (Carl Zeiss). The number of cells

counted in 200 squares was extrapolated to 1000 squares

(equivalent to 1 mL) to obtain the number of cells per

milliliter of sample. Due to the size difference between

eukaryotic cell (diatoms and chlorophytes) and prokaryotic

cell (cyanobacteria), a correction of cell size was applied to

the cyanobacteria. For filamentous cyanobacteria, approx-

imately every 50 µm were counted as 1 cell (which was

approximately equivalent to the volume of a filamentous

green algae cell); and for colonies, every 50 cells were

counted as a single cell (approximately the size of 1 free-

living chlorophyte cell).

Chlorophyll Analysis

Chlorophyll pigments were determined according to Uni-

ted States Environmental Protection Agency method 446

(Arar 1997). Samples were ground in 90% acetone to

obtain a homogeny extract and refrigerated at 4 °C for 24 h.

Then samples were centrifuged for 10 min at 3000 rpm and

supernatant filtered through a Millipore filter paper GF/F

(pore size 0.7 µm). Finally, a 3-mL of sample was taken to

measure absorbance at 630, 647, 664, and 750 nm corre-

sponding to chlorophyll-c (diatoms and dinoflagellates), -

b (chlorophytes), -a (all algae), respectively, and turbidity

was determined by spectrophotometer (Lambda 25, Perkin

Elmer). Chlorophyll concentrations were calculated using

Jeffrey and Humprey (1975) equations. The concentration

of pheophytin-a was determined by acidification of the

sample with 0.09 mL of 0.1 N HCl, and absorbance was

measured at 665 and 750 nm after 90 s. Pheophytin-a was

calculated using Lorenzen (1967) equation. The latter was

only determined for Myriophyllum samples containing

Myriophyllum tissue, which was impossible to separate

from the algae.

Hg Analysis

Sample manipulation and digestions were performed in

acid-cleaned flasks and tubes to avoid contamination.

MeHg and IHg concentrations from S. californicus samples

were determined by double-spike stable-isotope dilution

using gas chromatography–inductively coupled plasma

mass spectrometry (DS-ID-GC-ICPMS) (Monperrus et al.

2008; Point et al. 2007). THg was expressed as the sum of

IHg and MeHg individual levels. MeHg concentrations

from Myriophyllum samples were determined by the

selective and quantitative extraction of MeHg followed by

cold-vapor atomic fluorescence spectroscopy (CV-AFS)

determinations according to the procedure described by

Masbou et al. (2013). Because there is no periphyton-like

reference material, two different biological reference

materials consisting of DOLT 4 and TORT 2, obtained

from the National Research Council of Canada, were tested

to ensure measurement accuracy and traceability. MeHg

recoveries of 98 ± 1% (n = 2) and 105 ± 4% (n = 2)

relative to the certified concentrations were obtained for

DOLT 4 and TORT 2 materials, respectively.

Statistical Analysis

Statistical analysis was performed using Sigma Plot 11.0

graphic package and the IBM (SPSS, Chicago, Illinois,

USA) Statistics 20 statistical package. Significant differ-

ences between sampling areas and/or data groups were

determined using one-way analysis of variance (ANOVA)

and Kruskal–Wallis nonparametric test when residues did

Table 1 Chlorophylls

concentrations in Totora-

associated periphyton and

physicochemical data of the

water column in Uru Uru lake

Variable North N Central N South N

Chlorophyll “A” (mg L−1) 20.38 ± 10.26 4 4.01 ± 2.73 3 6.81 ± 3.64 4

Chlorophyll “B” (mg L−1) 5.19 ± 2.72 4 1.96 ± 0.85 3 2.04 ± 1.28 4

Chlorophyll “C” (mg L−1) 6.39 ± 3.40 4 3.59 ± 0.85 3 1.67 ± 0.16 4

Temperature (°C) 10.37 ± 0.17 4 14.11 ± 0.72 6 11.14 ± 0.14 16

Dissolved oxygen (mg L−1) 3.55 ± 0.43 4 3.73 ± 0.44 6 4.33 ± 1.14 16

pH (Units) 8.74 ± 0.62 3 8.83 ± 0.32 4 8.74 ± 0.75 16

Conductivity (µS cm−1) 2450.5 ± 608.81 3 2285.75 ± 590.32 4 2110.58 ± 5.59 12
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not show normal distribution or failed the homogeneity of

variance test. Linear regression analysis was performed to

evaluate the relationship between abundance of algal

groups and chlorophyll with MeHg concentration. Because

the number of replicates was frequently \10, a rigorous

diagnostic was performed. In addition to testing normality

(Shapiro–Wilk), constant variance and power of the test,

independence of residuals (Durbin–Watson statistic), and

the influence of each value on the regression was evaluated

(Cook’s distance, leverage and DFFITS). In addition, out-

liers were identified by regression diagnostic with

standardized residuals and studentized residuals. In all

cases, p\ 0.05 was assumed to be significant.

Results and Discussion

Algal Abundance and Distribution

Algal abundance in the periphyton varied significantly

between sampling areas (Kruskal–Wallis test, H = 7.229,

p = 0.017): It was higher in the north area (Fig. 1a).

Chlorophyll-a concentrations were also higher in the north

area (Fig. S1); however, the chlorophyll concentrations

may have been overestimated due to the presence of

Myriophyllum remaining in some of the samples at the

central location. The algal community was widely domi-

nated by diatoms with chlorophytes and cyanobacteria with

relatively low abundance (Fig. 1b). Diatom abundance

appeared to decrease from north to south (ANOVA,

p = 0.009), whereas chlorophytes (ANOVA, p = 0.028)

and cyanobacteria increased their abundance; however, this

change was only significant for cyanobacteria relative

abundance (ANOVA, p = 0.025). This variation could be

linked to differences in the distribution of nutrients in the

sampling areas. Indeed, the north of the lake is more

directly exposed to untreated sewage waters from Oruro,

which gradually becomes diluted toward the south (Ala-

noca et al. 2016b).

Concentrations of chlorophyll-a, -b and -c, respectively,
used here as indicators of total active algae, chlorophytes,

and diatoms showed a slightly different picture of algae

abundance and distribution in Lake Uru Uru. Chlorophyll-

a and -c distribution patterns were approximately the same

as those observed for cell counts (Fig. S1). However, there

was more chlorophyll-b in the north suggesting, unlike the

cell counts, higher abundance of chlorophytes toward the

north of the system (Fig. S1). Such contradiction may be

related to the inability of the microscopic technique to

detect pico- and nano-algae (Schlüter et al. 2006) as well as

distinguish between photosynthetically active and inactive

cells. However, the microscopic technique has the advan-

tage of allowing detailed taxonomical discrimination.

Chlorophyll analysis enables the quantification of active

populations regardless of their size, but it is limited to

general groups (division) (Gocke et al. 2003).

Hg Concentrations

THg levels were on average 265.9 ± 197.4 ng g−1 dry

weight (dw) (n = 9, Table S3), which is in the range of

values reported for periphyton in the Bolivian (54–

182 ng g−1 dw) and Brazilian Amazon (41.6–254 ng g−1

dw) (Dominique et al. 2007; Roulet et al. 2000). However,

in Uru Uru, the THg concentration in periphyton was

highly variable (60.6–920.7 ng g−1 dw) by more than one
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Fig. 1 a Algal abundance for sampling area. b Percentage composition of algal groups in periphyton. Central and south sites include only

Totora-associated periphyton, whereas central location also includes Myriophyllum-associated periphyton
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order of magnitude. The highest THg values were much

higher than those previously reported in the South Amer-

ican tropical region (Acha et al. 2005; Coelho-Souza et al.

2011; Correia et al. 2012; Molina et al. 2010).

Concentrations of MeHg ranged from 2.9 to 26.5 ng g−1

dw, which is similar to those found in the periphyton of the

Bolivian (7–28.2 ng g−1 dw) (Molina et al. 2010) and

Brazilian Amazon (2–64 ng g−1 dw) (Dominique et al.

2007; Roulet et al. 2000). Concentrations were not signif-

icantly different between Totora- and Myriophyllum-
associated periphyton. Totora accumulated 11.29 ±

5.36 ng g−1 dw, whereas Myriophyllum accumulated

5.94 ± 0.66 ng g−1 dw, but the MeHg concentration in

Myriophyllum belongs to the macrophyte + periphyton

microecosystem. The MeHg concentration in periphyton

between sampling areas (Fig. 2) did not vary significantly

(ANOVA, f2, 11 = 4.159; p = 0.053), but the power of the

test is low (0.050; 0.456), meaning that it is likely that the

true differences were overlooked.

MeHg concentrations for Totora periphyton were not

significantly correlated to THg, unlike the findings of many

other studies (Benoit et al. 2003; Drott et al. 2008), thus

suggesting that other environmental factors exert primary

control over MeHg accumulation in periphyton. Light as

well as Hg methylation and demethylation potentials may

have a major influence on MeHg accumulation (Alanoca

et al. 2016a) and may help to explain our results. However,

other variables, such as algal and microbial composition,

may also exert control over the availability of IHg and

MeHg for methylation and demethylation, respectively,

and may therefore be a relevant factor controlling MeHg

accumulation.

Correlation Between MeHg and Algae Abundance

Although we had a small number of samples (frequently

n\10), all of the statistical verifications were performed to

make sure that the correlations and possible relations were

not artifacts. We verified normality, constant variance, the

power of the performed test, regression diagnostics, and ran

influence-diagnostic tests.

Overall, periphyton in Lake Uru Uru seems to play a

major role in the Hg cycle (Alanoca et al. 2016a). MeHg

concentrations, chlorophylls, and algal abundance had

similar distribution patterns (Figs. 1, 2; Table S1). There

was also a significant relation between MeHg and chloro-

phyll-a in periphyton associated with Totora (R = 0.675,

R2 = 0.456, p = 0.0459) (Fig. 3a). Such a relation implies

that algae abundance in general may be influencing

approximately 50% of the variability of MeHg concentra-

tions in periphyton. To our knowledge, this is the first

evidence of algae involvement on MeHg bioaccumulation

in periphyton. The explanations for such control may be an

influence in the availability of IHg and MeHg for methy-

lation and demethylation, respectively, or simply

bioaccumulation (Bravo et al. 2014). In other experiments

with this periphyton, demethylation was found to be the

main Hg transformation (Alanoca et al. 2016a), suggesting

that periphyton may not be a source of MeHg in this

ecosystem. MeHg bioaccumulation in algae may only

exacerbate the role of periphyton as a sink of MeHg.

Although algae abundance may also be influenced by IHg

and MeHg concentrations, the toxicity in algae has only

been observed at very high concentrations (Mason et al.

1996).

The relation of chlorophyll-c with MeHg concentrations

suggests that diatoms are the most important for bioaccu-

mulation in periphyton (Fig. 3d). However, chlorophyll-

b (Fig. 3c) is almost as strongly related to MeHg accu-

mulation as chlorophyll-c. In fact, including the data from

Myriophyllum for chlorophyll-c, the relation between dia-

toms and MeHg becomes weaker (R2 = 0.461; p = 0.015).

We only present the data for Totora samples (Fig. 3)

because there could be some overestimation of chloro-

phyll-b and –a in Myriophyllum-associated periphyton.

Myriophyllum soft tissue was impossible to separate from

the periphyton, but this should not influence chlorophyll-

c concentrations.

Oedogonium sp. abundance was the only genus posi-

tively related to MeHg accumulation among the 35 algae

genus identified and quantified (Table S4). Even compared

with the relations between pigments and MeHg, the rela-

tion we observed between Oedogonium sp. (chlorophyte)

and the percentage of MeHg (Fig. 4b) or MeHg concen-

tration (Fig. 4a) was the strongest, suggesting that this is

the most important genus for MeHg accumulation among
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Arch Environ Contam Toxicol (2017) 72:1–10 5

123

Author's personal copy



algae. This genus alone may explain ≤72% of MeHg

accumulation (Fig. 4), thus making it the strongest con-

tributor to MeHg variability among the Totora periphyton

samples. No other genus of chlorophytes was significantly

correlated with MeHg concentrations. Culture experiments

have shown that different algae species may lead to dif-

ferent MeHg-accumulation capacities (Moye et al. 2002).

To further verify the relation between Oedogonium
abundance and MeHg accumulation, we evaluated whether

it persisted when including data from the periphyton of

Myriophyllum sp.. The Pearson correlation was very strong

(correlation coefficient 0.808, p = 0.0015, n = 12), but the

relation did not pass the constant variance test. Therefore,

we transformed the data to stabilize the variance of MeHg

and Oedogonium cells and obtained a significant relation

(R2 = 0.463, p = 0.015, n = 12) (Fig. 5). The relation is

weaker, but it holds despite having data from periphyton

associated with a morphologically and phylogenetically

different macrophytes that may even influence algae

composition.

According to our data, Oedogonium sp. could be the

most important individual group of algae for accumulating

MeHg and transferring it to the food web. Such relevance

of a single group of algae may be particularly relevant for

the development of bioremediation and pollution-man-

agement strategies. Indeed, adding the accumulation

capacities of Oedogonium sp. to the MeHg-demethylation

potential of this periphyton described elsewhere (Alanoca

et al. 2016a), makes this periphyton a sink for MeHg

produced in the water column, sediments, or other biofilms

(Alanoca et al. 2016a).

Little is known about the exact mechanism of accumu-

lation of MeHg by Oedogonium. However, Oedogonium
nonliving biomass appears to be a good sorbent for
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removal of lead(II) (Gupta and Rastogi 2008a), cadmium

(II) (Gupta and Rastogi 2008b), chromium(VI) (Gupta and

Rastogi 2009), nickel(II) (Gupta et al. 2010), arsenic (As),

molybdate (Mo), and selenium (Se) (Kidgell et al. 2014).

Living Oedogonium is also one of the most important algae

able to concentrate Fe, and chromium (Rai et al. 2008) and

has the potential for accumulating other metals such us

copper (Cu), nickel (Ni), zinc (Zn), uranium, and Hg

(Bakatula et al. 2014). Oedogonium species were found to

have excellent potential for the bioremediation of

wastewater polluted with Cu, manganese, Ni, cadmium,

Zn, and, to a lesser extent, metalloids (arsenic, molybde-

num, and selenium) (Ellison et al. 2014). The mechanism

of absorption or metal binding for MeHg was not studied,

but total Hg absorption in Oedogonium does not seem to be

influenced by pH, and there appear to be few sites specific

for Hg binding (Bakatula et al. 2014). A recent study also

showed higher tolerance to Hg in an algae community

dominated by Oedogonium (Val et al. 2016).

At the level of the major algal groups, MeHg and

chlorophytes abundance measured either by microscopic

cell counts or by chlorophyll-b were statistically related

(R2 = 0.518, p = 0.029 and R2 = 0.554, p = 0.021,

respectively) (Figs. 3b, c). These results agree with previ-

ous experimental studies using cultures that have shown

high MeHg-uptake rates by chlorophytes regarding other

algal groups (Gorski et al. 2006; Miles et al. 2001; Moye

et al. 2002). There is evidence of an active transport of

MeHg in algae, particularly if they have physiological

characteristics similar to chlorophytes (Moye et al. 2002).

However, chlorophytes may be strongly correlated with

MeHg abundance, mostly because of Oedogonium sp.

(Fig. S2). Chlorophyte variation in the periphyton associ-

ated with Totora was explained in[96% by Oedogonium
sp. cell abundance (r2 = 0.966, p = \ 0.001) despite

representing \10% in some samples and, on aver-

age,\60% of the total chlorophyte cells.

Likewise, there is a strong relationship between MeHg

and chlorophyll-c (R = 0.766, R2 = 0.587, p = 0.016)

(Fig. 3d), which suggests that diatoms may also actively

participate in the bioaccumulation of MeHg in periphyton.

Chlorophyll-c concentration can explain ≤58.7% of the

MeHg concentrations and 52.8% considering the degrees

of freedom. However, diatom abundance determined from

cell counts (cell/L) was not related with MeHg (Table S2).

Such discrepancy is likely because the microscopic count

cannot differentiate between active and inactive or dead

cells, and MeHg in eukaryotic algae is probably mediated
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Fig. 4 Relationship between Oedogonium sp. cell abundance and

MeHg concentration (a) (did not pass the test for independence of

residuals (Durbin–Watson statistic = 3.100) or MeHg relative

concentration (% of total Hg) (b). Linear regression (solid line),
prediction interval (dashed line), and confidence interval (dotted line)

Fig. 5 Relationship between Oedogonium sp. cell abundance and

Log MeHg concentration showing the linear regression (solid line),
prediction interval (dashed line), and confidence interval (dotted line)
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by active transport (Moye et al. 2002). Moreover, in vitro

cultures have found that diatoms also have high MeHg

uptake rates as well as chlorophytes (Bravo et al. 2014;

Mason et al. 1996; Pickhardt and Fisher 2007). However,

chlorophyll-c is also strongly correlated with chlorophytes

and Oedogonium sp. (Fig. S3), which makes it hard to

differentiate between the influences of each group on

MeHg accumulation. According to our observations, such

correlation may be attributed to diatom genus, such as

Ulnaria colonizing Oedogonium (Morales et al. 2013),

which still makes Oedogonium ecologically the most

important algae for MeHg accumulation. Regardless of

which group does the actual accumulation, Oedogonium
appears to control diatom abundance (Fig. S3). In fact,

Oedogonium sp. could explain most chlorophyll-c- vari-

ability (r2 = 0.619, p = 0.002), and none of the Diatom

genus found was found to be significantly correlated with

MeHg (p[ 0.05).

Unlike other studies that showed some significance of

cyanobacteria for MeHg production (Coelho-Souza et al.

2006; Lázaro et al. 2013), here no correlation between

cyanobacteria and MeHg accumulation was observed

(Table S1). MeHg accumulation in cyanobacteria could be

attributed to SRB communities thriving with the electron

donors produced by cyanobacteria (Baumgartner et al.

2006) or cyanobacteria accumulating MeHg (Mishra and

Nanda 1997). Perhaps the low abundance of cyanobacteria

in our samples explains the little if any significance they

had for MeHg accumulation.

Overall, Oedogonium sp. found to be associated with

Totora is the keystone species for MeHg contamination in

the food web based on periphyton, which could be a very

effective bioaccumulation pathway (Molina et al. 2010).

Because little MeHg seems to be produced in the peri-

phyton, but there is a substantial demethylation potential

(Alanoca et al. 2016a), Oedogonium sp. could be crucial

for MeHg accumulation, thus making it unavailable for

demethylation and available for organisms feeding on this

algae. This finding would be the first case in which MeHg

in periphyton is explained partly by organisms that are not

bacteria that produce it and/or decompose it. In data pre-

sented elsewhere (Alanoca et al. 2016a), periphyton

methylation was negligible, but demethylation was at least

two orders of magnitude higher, which did not explain

MeHg accumulation in periphyton. Therefore, MeHg in

periphyton may have been explained mostly by the peri-

phyton capability to accumulate Hg given, in this case, by

Oedogonium.
The fact that only one genus can be correlated to MeHg

is also groundbreaking because the little research per-

formed in this particular field suggested that large groups,

such as diatoms or cyanobacteria, were relevant for MeHg

production or accumulation (Coelho-Souza et al. 2006;

Lázaro et al. 2013). Here we show that like Hg methylation

among bacteria, in situ MeHg accumulation may be a

characteristic restricted to highly specific groups of algae.

Such specificity suggests that changing only one or few key

species could alter patterns of distribution, accumulation,

and biomagnification of MeHg. Our results also indicate

that many ecological interactions beyond food web struc-

ture may be overlooked and could be important to improve

our understanding of the Hg cycle.

Conclusions

Algae-community composition may be a major factor for

MeHg accumulation in Totora-associated periphyton.

Although MeHg concentrations were correlated with dif-

ferent groups of algae, the filamentous green algae

Oedogonium sp. seems to be the most influential on MeHg

accumulation and algae distribution at that given place and

location. Therefore, Oedogonium sp. has a significant

potential to influence MeHg cycle and may be a keystone

genus for MeHg introduction into the food web.
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Achá D, Hintelmann H, Yee J (2011) Importance of sulfate reducing

bacteria in Hg methylation and demethylation in periphyton

from Bolivian Amazon region. Chemosphere 82:911–916
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